
SUASAD-A267 897'eUSA IS EC ilqll!mI
US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES

DTmIC
ELECTE h

AUo12 19931

Software Development Information
Supported by the SEI Contractor

Assessment Questionnaire

This document has been approved
for public release and sale; its
di-tribution is un, imitpd.

I~. March 1991I
ASQB-GI-91-015

93mf
Reproduced From gI //,1 40

Best Available Copy /1684/ 6

AIRMICS
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

LNC• A-SSIFLED

Form Approv-,iREPORT DOCUMENTATION PAGE OMf, No
,F.:p. p~ :J, q '

Ia. REPORT SECURITY CLASSIFICATION lb, RESTRICTIVI; MARKINGS

UNCLASSIFIED NONE
2a. SECURITY CLASSIFICATION AUTIHORITY 3. DISTRIisurION / AVAILABI.ITY OF REPORT

N/A
2b. DECIASSIrICATION / DOUWNORADING SCHEDULE N/A

N/ANA

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUIbER(S)

ASQB-GI-91-015 N/A
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING OROANIZATION(if applicable)

Purdue University / SERC N/A
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and Zip Code)

Department of Computer Science
West LaFayette, Indiana 47907 N/A

Sa. NAME OF FUNI)ING/SPONSORING Rb. OI:PICE SYMBOL 9. PROC;REMI'NI INSRIIUMI.NT IDEN'I:ICATION NUMBERORGANIZATION (if applicable)

AIRMICS I ASQB - GI

8c. ADDRESS (City, State. and ZIP Code) i n RotiIPct- o0i 11tIN1ItJ l NIkum1 .-g,% ,
115 O'Keefe Bldg., PROGRAM IIROJIC-I TASK WORK UNIT
Georgia Institute of Technology FL.MENT NO. NO. NO. ACCESSION NO.
Atlanta, GA 30332-0800 62783A DY10 02-04-02

11. TITLE (Include Security Classification)
Software Development Information Supported by the SEI Contractor
Assessment Questionnaire (UNCLASSIFIED)

12. P•RSONAL AUTIIOR(S)

Dunsmore, Buster; Varnau, Steve

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

final report FROM _ T 1991, March, 12 25

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECTr TERMS (Continue on reverse it necessary and identify by block number)
CASE Tools; Distributed Computing Design System; DCDS; Teamwork;

FIELD GROUP SUB-GROUP Excelerator; EPOS; DesignAid; SA Tools; Software engineering environ-
ment Systems; SEES; Ada Programming Support Environment; APSE

19. ABSTRACT (Continue on reverse if necessary and identity by block number)

The information presented in this report was acquired as part of the Distributed Computing Design System
(DCDS) evaluation project, AIRMICS Report ASQB-GI-91-009, "Evaluation of DCDS for Meeting the Data
Collection Requirements for Software Specification, Development, and Support". The DCDS evaluation is out-
lined in the succeeding paragraph. This report augments the DCDS report by comparing the data requirernents
for a fully flexible CASE environment with the data requirements suggested by the Software Engineering Insti-
tute (SEI) Contractor Assessment Questionnaire.

The DCDS evaluation technical report consists of five separate but related reports which evaluate the Distrib-
uted Computing Design System (DCDS). DCDS was developed by TRW as a software development environ-
ment for real-time, distributed systems. The principal investigator evaluated DCDS in terms of: a) its data col-
lection requiremeltis, b) its software development information completeness, c) its usability, d) how it compares
to five commercially available CASE tools, and e) its suitability as an Ada Programming Support Environment
(APSE).

20, DISTRIiTION I AVAILAIIIIITY Of AI1STRACT it. ABSTRAcr SECURITY ('IASSII'iCATION

UNCLASSIFIED / UNLIMITED [] SAME AS RFI'. [] DTIC USERS UNCLASSIFIED

22a. NAME OF RESItONSIRII.It INDIVIDUAl. 22b. TFI.E.IPION, (Include Area Code) 22c O:I*IC. SYMBOl.
Howard C, "Butch" Hgllev (404) 894-3110 AS B-GI

"DD FORM 1473, 04 MAR 83 AIR edition may be used until exhausted RI'y Cl ASIflCATIOW sitI I'AGIF
All other edillons are obsolete UNCLASSIFIED

The research herein was performed for the Army Institute for Research in Management
Information, Communications, and Computer Sciences I(,ARMICS), the RDTE organization
of the U.S. Army Information Systems Engineering Command (USAISEC). The sponsor for
the project was the Office of the Director of Information Systems for Command. Control,
Communications, and Computers (ODISC4). The principal investigator was Dr. H. Duns-
more of Purdue University.

This research report is not to be construed as an official ArmN position, unless so
designated by other authorized documents. Material included herein is approved for public
release, distribution unlimited, and is not protected by copyright laws. Your comments on
all aspects of the document are solicited.

Acce-io1 "or

I.'. 'o . :-, 7

IJ.

B y

D'IrC QUALITY INSf7Z-L

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

Glenn E. Ra..ine John R. Mitchell
Chief Director
C1SD AIRMICS

Software Development Information
Supported by the SEI Contractor Assessment Questionnaire

S. Vamau
H. Dunsmore

Software Engineering Research Center (SERC)
Department of Computer Sciences

Purdue University, West Lafayette, IN 47907

SERC.TR-78-P
July, 1990

Technical Report 3.2 from the Research Project:
Evaluation of DCDS for Meeting the Data Collection

Requirements for Software Specification, Development, and Support

Abstract

In this paper we examine the Software Engineering Institute Technical Report
CMU/SEI-87-TR-23 (Fall, 1987). Written by Watts Humphrey and William Sweet, "A
Method for Assessing the Software Engineering Capability of Contractors" details
questions and procedures to be used in considering potential DoD contractors.
Humphrey and Sweet designed a questionnaire to assess objectively the capability of
contractors to use modern software engineering techniques in product development. In
our previous work we identified data collection requirements for CASE systems. In this
paper we compare our data requirements to the data requirements suggested by the SEI
questionnaire.

The SEI questionnaire focuses on the software development process including
CASE systems as only a part of software engineering capability. It emphasizes two
dimensions of software engineering to assess contractor capability - process maturity
and technology. It contains no direct correlation to the Product data category that
figures prominently in our information requirements. Thus, it is not surprising that the
SEI questionnaire scored relatively low in the Product Description and Product
Implementation categories. It is also weak in the Product Maintenance categories.

Because of its concentration on the software development process, the SEI
report scored relatively high in the Process Management, Process Coordination, and
some parts of the Process Quality Conarol categories. Also, since verification (i.e.,

-2-

testing) is very important to the software development process, the SEI questionnaire is
fairly strong in the Product Verification categories.

Background

The purpose of this research is to evaluate the Distributed Computing Design
System (DCDS) to determine how appropriate it is for a software engineering support
environment.

There is increasing interest in software engineering support environments
(frequently known as Computer Aided Software Engineering (CASE) systems). There
are hundreds !f such systems on the market (and more becoming available each year).
But, many potential users question how much these support environments increase
productivity, if any. Some companies have attempted to use software engineering
support environments with mixed success. The overhead costs of purchase, installation,
and training coupled with the possibility of short-term decrease in productivity
represent serious concerns.

It is clear that no one support environment contains all possible functions,
methods, and tools that could be used in software development. Each support
environment supports a subset - some far richer than others.

It is becoming increasingly clear that in order to achieve the software
productivity gains necessary for world-wide competitiveness that something on the
order of software engineering support environments must be used. Thus, research
concerning problems with existing software engineering environments and
demonstrating alterations that will increase their usefulness will be a valuable
contribution to software productivity.

In September, 1987, the Software Engineering Institute published a Technical
Report entitled "A Method for Assessing the Software Engineering Capability of
Contractors" [HUMP87]. This SEI questionnaire details questions and procedures to
be used in considering potential DoD contractors. They designed a questionnaire to
assess objectively the capability of contractors to use modem software engineering
techniques in product development.

-3-

In our previous work, we identified data collection requirements for CASE
systems [VARN90]. We now compare these data requirements to the data requirements
suggested by the SEI questionnaire. The purpose of this phase of our study is to
provide further clarifieation, extension, and validation of our data requirements from
another important source in the software engineering field.

The data collection requirements consist of product data (which describe the
software product itself) and process data (which reflect the activity involved in
developing and supportilg the product). The main focus of these categories and their
component sub-categories is the information associated with a particular software
project. The SEI questionnaire, on the other hand, evaluates levels of technology and
process maturity. The focus here is the process across software projects. This
viewpoint includes CASE systems as only a part of software engineering capability.
The data requirements viewpoint centers around a flexible CASE environment which
supports as much of the software engineering capability as possible. These two views
definitely have a large intersection, but the questionnaire is certainly a more abstract
perspective.

Results

As stated above, the SEI questionnaire emphasizes two dimensions of software
engineering to assess contractor capability. The stages of process maturity are used as
a major qualifier of contractors. This corresponds to the Process category of our data
requirements. Process maturity, however, stresses using process data from project to
project to improve software development procedures. This concept specifically
corresponds to Project History data under our Process Quality Control category and
Process Plan data under our Process Management category. The stages of
technology constitute the other major qualifier. This corresponds somewhat to the
extent to which a CASE system exhibits an open architecture - which we discussed in
our previous report [VARN90.

The SEI qucs,(ininire cuataas no direct correlation to the Product data
category that figures prominently in our information requirements. Certainly the
questionnaire deals with this type of information indirectly, mainly in the way a
development process deals with it. This type of information is critical to software
development. However, the SEI questionnaire takes much of this information for
granted and deals at a higher level of abstraction. The types of data used in traditional
CASE tools are largely ignored.

-4-

Below we present a comparison of the relative use of the data requirements
identified (see the Appendix). The Henderson/Cooprider column represents data
requirements identified from a report describing a functional view of CASE technology
(HEND88]. The CASE tool column represents a "best case" combination of all the
CASE tools studied in a previous phase of this research [VARN9OJ. For each category,
the given score is the maximum score of all five tools in the previous report. The best
cascs of those popular tools reflect current technology. The SEI questionnaire column
represents data requirements needed to support modem software engineering techniques
as described in the SEI questionnaire [HUMP87].

The following scale is used to indicate how completely each requirement is met,
or is used by each source.

- == No support at all or not addressed by tool (equivalent to 0)
1 == Possible to incorporate information, but not specifically supported
2 == Category addressed, but not fully supported
3 == Adequate
4 == Exceptional treatment of category
5 == Could not be better

Note that just because two items receive the same number for the same
category, this does not mean that they are functionally equivalent for that category. For
example, both the CASE Tools and :he SEI Questionnaire rate a 3 for the category
Description/Implementation below. This does not mean that the CASE Tools and the
SEI Questionnaire have identical methods by which the developer can describe the
relationships among planned and implemented components - only that we consider the
Description/Implementation categor-i as "Adequate" for both the CASE Tools and the
SEI Questionnaire.

Also, note that the SEI Questionnaire was intended for a different purpose than
that for which we are using it. The reader should not interpret our comments on
missing or inadequate information in the SEI Questionnaire as criticisms of this work,
which was quite good. Our comments only refer to the adequacy of the SEI
Questionnaire for our purposes.

-5-

PRODUCT - Description

Category Henderson/Cooprider CASE Tools SEI Questionnaire
Functionality 3 4 2
Interfaces 2 4 2
Performance 3 4 3
Time Constraints 1 3 1
Fault Tolerances 1 2 1
Data Flow 3 4 1
Process Flow 3 4 1
Resources 1 3 1
Structure 4 4 1
Entity-Relation. 2 3 1
Communication 3 4 2
Data 3 3 1
Req./Design 3 3 3
Design/Perf. 3 2 2
Descrip./Impl. 4 3 3
Design/Design 1 3 2
Prototypes 2 2 3
Mean Scores 2.5 3.2 1.8
Range 1-4 2-4 1-3
Inadeq. Pctage. 41% 18% 76%

Note that the Mean Scores average the ratings for each item
(Henderson/Cooprider report, CASE Tools, and SEI Questionnaire) for all categories.
The Range gives an idea of the variability of that item across all categories. The
lnadeq. Pctage. line reports the percentage of all ratings for each item that are 0, 1, or 2
(instead of 3 or 4 - there were no 5's) and thus judged to be inadequate.

To summarize, supporting this category of information we found:

The Henderson/Cooprider (MIT) Report had a 2.5 average score indicating
nearly-adequate support for this category. The "best case" from the five CASE tools
had a 3.2 average score indicating an adequacy not surprising in light of the intended
purpose of these tools, but [VARN901 shows that no one individual tool has a mean
greater than 2.6. The SE! Questionnaire had only a 1.8 average score. The SEI
questionnaire scored relatively low in this area. This was expected because the focus of
the SEI questionnaire is the process - not the product.

-6-

PRODUCT - Implementation

Category Henderson/Cooprider CASE Tools SEI Questionnaire
Actual Product 3 3 1
Metrics 2 1 3
Library 4 2 2
Templates 3 3 1
Compile Param. - -
Mean Scores 2.4 1.8 1.4
Range 0-4 0-3 0-3
Inadeq. Pctage. 40% 60% 80%

To summarize, supporting this category of information we found:

The Henderson/Cooprider (MIT) Report had a 2.4 average score indicating
nearly-adequate support for this category. The "best case" from the five CASE tools
had a 1.8 average score indicating very little support for this category. The SEI
Questionnaire had only a 1.4 average score. The SEI questionnaire is less than
adequate for all categories except Metrics. Once again, note that there is no
information collection support for the Compile Parameters category. This category
constitutes information that we believe should be part of a software development
environment that appears in none of the Henderson and Cooprider (MIT) Report, the
representative CASE tools, or the SEI Questionnaire.

-7-

PRODUCT - Verification

Category Henderson/Cooprider CASE [0ools SEI Questionnaire
Test Plan 3 3
Test Tools 2
Test Suites 2
Status - 1 3
Errors Found 1 2 3
Ver./Descrip. - 2 2
Analysis 1 2 4
Mean Scores 0.3 1.4 2.7
Range 0-1 0-3 2-4
Inadeq. Pctage. 100% 86% 43%

To summarize, supporting this category of information we found:

The Henderson/Cooprider (MIT) Report had a 0.3 average score indicating
almost no support for this category. The "best case" from the five CASE tools had
only a 1.4 average score indicating a sad lack of support for verification capabilities in
existing tools. On the other hand, the SEI Questionnaire had a 2.7 average score.
Verification data is very important to the software development process of a particular
project. The SEI questionnaire is fairly strong in this area, especially stressing analysis
of project data.

-8-

PRODUCT - Maintenance

Category Hei-.e--rson/Cooprider CASE Tools SEI Questionnaire
Maintenance History 2 2 2
Special Ca'.es 1
Comp!.ints 3 1
Pro .,sed Changes 3 1
General Information
Mean Scores 0.4 1.8 0.8
Range 0-2 0-3 0-2
inadeq. Pctage. 100% 60% 100%

To summarize, supporting this category of information we found:

The Henderson/Cooprider (MIT) Report had a paltry 0.4 average score
indicating almost complete lack of support for the maintenance category. The "best
case" from the five CASE tools had a not-much-better 1.8 average score indicating
poor support for maintenance activities in existing tools. The SEI Questionnaire had a
0.8 average score. The SEI questionnaire concentrates on software development, and
like other sources, it is weak in this area.

"-9-

PROCESS - Management

Category Henderson/Cooprider CASE Tools SEI Questionnaire
Schedule 4 4 3
Budget 3 3
Pers. Assign. 4 3 2
Environ. Custom. 3 2 1
Format Parameters 3 4
Process Plan 4
Mean Scores 2.3 2.7 2.2
Range 0-4 0-4 0-4
Inadeq. Pctage. 33% 33% 50%

To summarize, supporting this category of information we iound:

The Henderson/Cooprider (MIT) Report had a 2.3 average score indicating
some, but very little, support for the process management category. The "best case"
from the five CASE tools had a 2.7 average score indicating nearly adequate support for
this category. The SEI Questionnaire had a 2.2 average score. Some parts of this area
are covered quite well by the SEI questionnaire (e.g., Process Plan), but some project
specific data is missing in the personnel category. Two of the categories are tool
details, and are lacking. Process planning and improvement is a major concern of the
SEI questionnaire.

- 10 -

PROCESS - Coordination

Category Henderson/Cooprider CASE Tools SEI Questionnaire
Project Direct. 3 3 1
Configuration 3 3 3
Standards 3 - 4
Communication 3 1 1
Commun. Formats 3 - -
Mean Scores 3.0 1.4 1.8
Range 3 0-3 0-4
lnadeq. Pctage. 0% 60% 60%

To summarize, supporting this category of information we found:

The l-cnderson/Cooprider (MIT) Report had a 3.0 average score (all 3's)
indicating uniformly adequate support for the process coordination category. The "best
case" trrr the five CASE tools had only a 1.4 average score indicating a sad lack of
support for coordination capabilities in existing tools. The SEI Questionnaire had a 1.8
avcragc score. The SEI questionnaire is very strong in standards and configuration
categories. It is very weak in the other areas which may not be considered formal parts
of the process, but are still important to quality and productivity.

PROCESS - Quality Control

Category Henderson/Cooprider CASE Tools SEI Questionnaire

Quality Goals 3 - 1
Fault Conseq. 2 1
Target Environ. 2 - I
Inspections - 4
User Input 2 1 -

References 3 2

Project History 1 1 4

Mean Scores 1.6 0.9 1.6
Range 0-3 0-2 0-4
Inadeq. Pctage. 71% 100% 71%

To summarize, supporting this category of information we found:

The Hcnderson/Coopridcr (MIT) Report had a 1.6 average score indicating poor
support for this category. The "best case" from the fivc CASE tools had only a 0.9
average score indicating a pitiful lack of support for quality control capabilities in
existing tools. The SEI Questionnaire had only a 1.6 average score. The questionnaire
relies on inspcctions, project history, standards, and piocess m',turity to provide quality
control. It is quite strong in those areas, but weak in others.

-122-

SUMMARY

The table below summarizes the mean scores from the previous 7 tables:

MIT CASE SEI Category

2.5 3.2 1.8 Product Description

2.4 1.8 1.4 Product Implementation

0.3 1.4 2.7 Product Verification

0.4 1.8 0.8 Product Maintenance

2.3 2.7 2.2 Process Management

3.0 1.4 1.8 Process Coordination

1.6 0.9 1.6 Process Quality Control

1.9 2.2 1.8 Mean Scores

From these varied sources we believe we have compiled a very comprehensive
data requirements list for CASE tools. We think we have also developed a good
evaluation basis for software environments and information repository standards flexible
enough to support the fast-paced changes of software engineering technology.

So far in our work we have determined that the software development
information as outlined by Henderson and Cooprider in their MIT Report, the actual
information supported by existing CASE tools, and the software development
information suggested by Humphrey and Sweet in their SEI questionnaire all could do a
much better job of supporting software development. Our research to this point
suggests that the current state-of-the-art in CASE technology is not adequate to provide
the kind of software development support needed to meet current data collection
requirements for software specification, development, and support.

In the next step of our work we will proceed to compare and contrast the
information collected by DCDS with these other sources.

-13-

References

[HEND88I Henderson, John C. and Jay G. Cooprider. "Dimensions of I/S Planning
and Design Technology". Center for Information Systems Research
Technical Report. MIT Sloan School of Management. September, 1988.

[HUMP87J Humphrey, Watts S. and William L. Sweet. "A Method for Assessing
the Software Engineering Capability of Contractors". Software
Engineering Institute Technical Report CMU/SEI-87-TR-23. Fall, 1987.

[VARN90] Varnau, S. and H. Dunsmore. "Software Development Information
Supported by Typical CASE Tools". Software Engineering Research
Center Technical Report TR-77-P. July, 1990.

-14-

APPENDIX - Data Collection Requirements for Software Specification,
Development, and Support

Below we re-present the data requirements identified in our previous report
[VARN90]. These requirements are divided into two categories. Product data includes
everything which describes the software product itself. The typical results of a software
project are the requirements, specifications, design, implementation, code metrics, test
plans, etc. These materials comprise product data. Process data includes everything
which reflects the activity involved in developing and supporting the product. This
includes personnel, schedule, budget, etc.

Product data is further subdivided into description, implementation,
verification, and maintenance categories. Description data consists of information
from the development phases commonly known as requirements, specifications, and
design. This category of items serves as a plan for the product in the initial stages of a
project and as documentation in later stages. Note that description data should be
flexible enough to include software analysis and design information, user documents,
test plans, and anything else needed. Implementation data consists of the deliverable
components of a product. This includes code and documentation for the end user.
Verification data consists of correctness information (typically testing information).
Maintenance data consists of information used in ensuring continuing usefulness of the
project after initial delivery.

Process data is subdivided into management, coordination, and quality
control categories. Management data is used to control the project in terms of time and
resources used. Coordination data is used to help personnel communicate, thus
increasing quality and productivity. Quality control data is used to ensure and generally
support development of a correct, robust, safe product.

Another term which appears in this report is component. This is a general term
referring to an element of unspecified type or a group of elements. A component
usually refers to a part of the deliverable product (e.g., a code module or a document).
A component may also be part of a specification, design, etc. which refers to code or
documents.

-15-

PRODUCT

Product Description - Planning, development, documentation of all aspects of the
specific product. This is the major category that includes most of what we think of
when we think of what the software does.

Functionality - What the product must do. This information should reflect the
requirements and specifications for the software. It can be in a formal, semi-
formal, or just a natural language format. It should include data input, data
output, product behavior, and other properties such as portability and security.

Interfaces - Interaction with external systems. This information should detail
what external systems are related to this software and the specific types of
interactions between the software and the external systems.

Performance - Time and space that the product uses. This is information that
describes the required memory and disk space .or the software, along with
standard (or typical) execution times. The information may be quite
complicated if the software can be run in various size configurations or if
execution times are varied dependent on input parameters.

Time Constraints - Real time limitations. This information outlines the time
performance constraints placed on the software. This includes any partial or
total constraints placed on execution times.

Fault Tolerances - Error and failure handling. This information outlines the
acceptable responses of the software to "erroneous" input or to hardware
failure. Such errors and failures can include exceptions, faults, and resource
limitations. The information in this category can include the types of error
messages that are to appear, the kinds of errors that need not be detected, and
the kinds of recoveries expected from certain errors.

Data Flow - Movement of data in and out of components or stores. This
information describes the way in which data moves throughout the software. It
treats each component or store as a data-handling entity and describes that data
that moves in and out of that entity (including what the data is, where it came
from. and where it is going).

Process Flo-A - Execution progression of components; sequential/parallel. This
information describes the software from a control flow viewpoint discussing the
flow of execution in both normal and abnormal situations. It also includes
sequential and parallel control flow information.

Resources - Resource usage of component, hardware considerations. Resources
are any entities external to the software. This information discusses resources
that either supply information to the software or receive information from the

- 16-

software.

Structure - Static decomposition of components. This information conveys any
logical grouping of components for any reason; for example, grouping all
components that deal with the same database. There may be several static
decompositions for the same software.

Entity-Relationships - Relationships among components and externals. This
information includes all of the typical E-R type information, e.g., for each entity
to what other entities is it related and in what manner.

Communication - Internal interfaces. Within the software how is
communication accomplished? What messages (in the object-oriented sense) are
communicated among the software's entities?

Data - Often now being called the Data Dictionary, Data Encyclopedia, or
Data Repository. Data types, operations, constants, descriptions, stores,
relationships, objects and classes, processes, data flows, events, states, external
entities. May be related to Project Index data (see Process Coordination).

Requirements/Design - Relationships of goals and components. This
information tells which requirements are related to (satisfied by) which elements
of the design.

Design/Performance - Relatonships of structure and performance. This
information tells which elements of the design are related to the various
performance constraints.

Description/Implementation - Relationships of planned and implemented
components. This information links the requirements and specifications
(description of the software) with the actual implementation. That is, what
components implement the requirements and specifications.

Design/Design - Relationships of alternative design representations. For
software with more than one design proposed, how does each relate to the other?
What are the functionality and performance tradeoffs of each?

Prototypes - What prototyping activity is planned? What specific aspects of the
software is to be prototyped? What will be done with the prototype? What
simulations will be conducted? What experiments will be tried to test
requirements, specifications, design, etc. This information, when complete,
should include the prototype goals (questions the prototype is designed to
answer) and results (experimentally-determined answers), as well as the actual
prototype product, simulation code, etc.

- 17 -

Product Implementation - This is the major category that includes the actual software
product (i.e., code, documents, etc.) as well as relevant information.

Actual Product - Code, Documents for end user. This is the software and
documentation produced. It consists of all new (and possibly re-used) code and
the text and graphics necessary to produce documentation for the software. This
category is closely related to Configuration (see Process Coordination) which
keeps track of versions, revisions, etc.

Metrics - Product statistics. This information consists of any and all metrics
computed primarily from the software code (but possibly also from
documentation or other related representations of the product). It may include
(but is not limited to) such metrics as lines-of-code, size of data structure, and
complexity (e.g., v(G)). Such metrics may be used for management, testing,
maintenance, performance, and even quality control purposes.

Library - Globally available, re-usable components. This information contains
either actual re-usable components (or some so t of pointer to them) that will be
(or have been) employed in the implementatior of the software. Such a library
may have project, company, or even wider scope.

Templates - Outlines and examples of commoi components. This information
contains sample components that conform to project, company, or wider
standards. Such components may simply be bare-bones schema with little actual
code or may be nearly complete components that require only minor
modification before use in the software.

Compile Parameters - How code is compiled for testing, debugging, and
(ultimately) for generating a production version. This information includes
standard compilation parameters, ways of testing various versions, searching
order for external components (such as re-used components), and special
parameters necessary for preparing the product version.

- 18 -

Product Verification - This is the major category that includes all information related
to testing the software (or any related activity that attempts to discover and correct
errors).

Test Plan - Outline of testing process. This contains at least rudimentary
information about how the software is to be tested: what types of testing
procedures (perhaps formal methods) will be pursued, what tools will be used,
what types of test data, what will be done about errors that are discovered, etc.

Test Tools - Custom functions for debugging and testing. This is information
abtout the specific tools that will be (were) used for testing the software. These
can include tools that are part of the CASE tool, standalone external tools, or
specific test harnesses to be produced as part of the software development
process.

Test Suites - Test data and expected results. This information describes
specifically how test data is to be generated, how the software is to be
"exercised" with this data, and how the results are to be interpreted.

.'PAus - ui;s iifoimation (collected during the software testing process) outlines
which tests have detected the presence of an error and which tests have failed to
detect the presence of an error. Obviously, it is possible to tell from this
information which tests have been run (and either detected or failed to detect
errors) and which tests have not been run. For regression tests, this information
will tell which have been run on which versions and which revisions.

Errors Found - Errors discovered through testing; error reports. This
information outlines what errors have been discovered, which have been
corrected, which are planned to be corrected, and which (if any) are not planned
to be corrected.

Verification/Description - This information links the requirements and
specifications (description of the software) with the verification process. That is,
what has been (will be) done to assure that specific requirements and
specifications have been tested.

Analysis - Results of matching implementation against description (i.e.,
requirements and specifications). This information includes such items as types
of errors, time and space performance, error and failure handling, consistency,
and completeness.

-19-

Product Maintenance - This is the major category that includes all information related
to the maintenance of the software, its upkeep, and support of the product in use (and
perhaps even in late development stages).

Maintenance History - This information includes all actual changes made and
known problems not yet corrected. It also includes information about various
software releases and versions and how they differ from each other.

Special Cases - How the product is being used. How the product is being
customized. This includes any release or version related information not
included in the Maintenance History sub-category above due to special
circumstances.

Complaints - Reported errors and their locations, problems; evaluations; replies.
This information includes all requests for changes to the software based on
actual errors (i.;., the software fails to meet one of its requirements).

Proposed Changes - Reported desires for new versions (including specific
modifications); evaluations; replies; planned upgrades. This information
includes all requests for changes to the software based on enhancements (i.e.,
the software meets its requirements, but it could do something even more useful
for the end user).

General Information - Any other information related to the software as it is in
operation; for example, (but not limited to) market penetration, customer
addresses and contacts, and versions and licenses.

- 20 -

PROCESS

Process Management - Resource management for the software project. This is the
major category that includes most of the management information pertaining to the
software development process. A good CASE tool should support most of the
information maintained and manipulated by good stand-alone project management
tools.

Schedule - Time to finish each task. This information will include both
estimates of task durations and triggering mechanisms (for those not yet
completed) as well as actual start, stop, and duration times (for those tasks
already completed). It will include any relevant dependency and status
information, as well.

Budget - This information includes estimates of salaries, personnel costs,
hardware costs, etc. (for tasks not yet completed) as well as actual salaries,
personnel costs, and hardware costs (for those tasks already completed). It will
include any relevant dependency and status information, as well.

Personnel Assignments - This information includes responsibilities (who is
responsible for each aspect of the software development), backups (who are
available to step in for those with primary responsibilities), authorities (who has
read/write access to what project data), as well as individual data (experience,
skills, etc.) for each member of the software development team.

Environment Customization - This information describes the environment in
which this project is being developed (including how it may differ from the
standard software development environment in this company). What
procedures, tools, techniques, languages, management standards, coding
standards, and documentation standards are being used. How text and graphics
are formatted for various media. This information outlines how the software is
to (does) interact with the end users. Information such as standard screen
formats, standard error formats, standard input "forms" are all included in this
information.

Format Parameters - Parameters for input to and output from the CASE
system, including reports throughout the software life cycle that keep
management informed of the progress on this software project. What reports are
to be generated, what schedule is to be followed for them, are they to be
manually or automatically generated, how should they look for various media.

Process Plan - What plan is to be (was) followed in developing the software.
What phases are to be employed, what standards, and overall schedule. This can
even include pre-project bidding and contracting information and some
allowance for process improvement.

-21 -

Process Coordination - This major category includes all information needed by the
software development team for cooperation, communication, and organization.

Project Directory - Project, company, or environment scope directories. This
information includes all linkages to people, requirements, specifications, design,
code, and testing relevant to this software project. For example, in the people
category it can include all personnel working on the project, personnel with
previous experience on this or a similar project, personnel with consulting
capabilities outside the project, etc.

Configuration - Arrangement of all product and some process data. This
includes such information as (but is not limited to) software versions, revisions
(history of the software), structural relationships, and control locks (overwrite
protection).

Standards - Project consistency rules. This information includes all standards
that are to be (were) followed during software development. Note that several
other categories include some standards. In this category they are to be all
collected including documentation (perhaps the most important), personnel,
design, coding, messaging, and implementation standards.

Communication - Intra-group communication. This information includes
names, addresses, phone numbers, e-mail addresses, and office locations of all
personnel working on the project. It can also include (but is not limited to) mail
aliases (mailing lists), note logs, meeting minutes, note/component relationships
(i.e., topical index for notes, references).

Communication Formats - Idea communication media. This includes
information on the various modes of communication among software
development team members: for example, (both in-person as well as electronic
versions of the following) forums, bulletin boards, brainstorming sessions, votes,
etc.

- 22 -

Process Quality Control - This major category includes all information pertaining to
quality assurance including product quality, process quality, run-time environments, and
history.

Quality Goals - Criteria to measure quality. This includes information from
requirements, specifications, and otherwise that can be used to assess the quality
of the completed software project.

Fault Consequences - What happens if the product fails. This information
describes the severity of the problems involved if the entire product or any
components thereof fail to operate according to expectations.

Target Environment - How will the product be used. The software must
operate within certain hardware and software constraints. This includes such
information as the type of operating system, LAN operation, possible abuses,
etc,

Inspections - Standards, schedules, participants, results. This includes
information about what inspections arc planned (or for a completed project,
what inspections were conducted). It also includes information on classes,
design meetings, problem resolution meetings, and informal meetings.

User Input - Customer/End-user evaluations and comments. What user input is
going to be (was) collected. How is it to be used. What effect will it have on
the developing and completed software product. What input will it obtain from
experts in the field.

References - Miscellaneous, external references. This can include (but is not
limited to) references to similar projects, projects in the same application area,
projects conducted tir similar hardware systems, projects developed by the same
or similar software development teams, etc.

Project History - Record of changes and results of the process. This
information includes all aspects of project history that is not found in
Configuratior (see Process Coordination). It may include (but is not limited to)
project summaries, post-mortem analyses, process evaluations, and process
improvement suggestions.

